20 research outputs found

    Hysteresis of Natural Magnetite Ensembles: Micromagnetics of Silicate-Hosted Magnetite Inclusions Based on Focused-Ion-Beam Nanotomography

    Get PDF
    Three-dimensional geometries of silicate-hosted magnetic inclusions from the Harcus intrusion, South Australia have been determined using focused-ion-beam nanotomography (FIB-nt). By developing an effective workflow, the geometries were reconstructed for magnetic particles in a plagioclase (162) and a pyroxene (282), respectively. For each inclusion, micromagnetic modelling using MERRILL provided averaged hysteresis loops and backfield remanence curves of 20 equidistributed field directions together with average Ms, Mrs, Hc, and Hcr . The micromagnetic structures within each silicate are single-domain, single-vortex, multi-vortex and multi-domain states. They have been analyzed using domain-state diagnostic plots, such as the Day plot and the Néel plot. SD particles can be subdivided into groups with dominant uniaxial anisotropy (Mrs/Ms ∼ 0.5 and 10 < Hc < 100 mT) and mixed uniaxial/multiaxial anisotropy (Mrs/Ms ∼ 0.7 and 10 < Hc < 30 mT). Most single-vortex particles lie on a trend with 0 < Mrs/Ms < 0.1 and 0 < Hc < 10 mT, while others dis- play a broad range of intermediate Mrs/Ms and Hc values. Single-vortex and multi-vortex states do not plot on systematic grain-size trends. Instead, the multi-component mixture of domain states within each silicate spans the entire range of natural variability seen in bulk samples. This questions the interpretation of bulk average hysteresis parameters in terms of grain size alone. FIB-nt combined with large-scale micromagnetic simulations provides a more complete characterization of silicate-hosted carriers of stable magnetic remanence. This approach will improve the understanding of single-crystal paleomagnetism, and enable primary paleomagnetic data to be extracted from ancient rocks

    The application of Lorentz transmission electron microscopy to the study of lamellar magnetism in hematite-ilmenite

    Get PDF
    Lorentz transmission electron microscopy has been used to study fine-scale exsolution microstructures in ilmenite-hematite, as part of a wider investigation of the lamellar magnetism hypothesis. Pronounced asymmetric contrast is visible in out-of-focus Lorentz images of ilmenite lamellae in hematite. The likelihood that lamellar magnetism may be responsible for this contrast is assessed using simulations that incorporate interfacial magnetic moments on the (001) basal planes of hematite and ilmenite. The simulations suggest qualitatively that the asymmetric contrast is magnetic in origin. However, the magnitude of the experimental contrast is higher than that in the simulations, suggesting that an alternative origin for the observed asymmetry cannot be ruled out. Electron tomography was used to show that the lamellae have lens-like shapes and that (001) planes make up a significant proportion of the interfacial surface that they share with their host

    Control of quantum magnets by atomic exchange bias

    No full text
    Mixing of discretized states in quantum magnets has a radical impact on their properties. Managing this effect is key for spintronics in the quantum limit. Magnetic fields can modify state mixing and, for example, mitigate destabilizing effects in single-molecule magnets. The exchange bias field has been proposed as a mechanism for localized control of individual nanomagnets. Here, we demonstrate that exchange coupling with the magnetic tip of a scanning tunnelling microscope provides continuous tuning of spin state mixing in an individual nanomagnet. By directly measuring spin relaxation time with electronic pump–probe spectroscopy, we find that the exchange interaction acts analogously to a local magnetic field that can be applied to a specific atom. It can be tuned in strength by up to several tesla and cancel external magnetic fields, thereby demonstrating the feasibility of complete control over individual quantum magnets with atomically localized exchange coupling

    Profound daily vertical stratification and mixing in a small, shallow, wind-exposed lake with submerged macrophytes

    No full text
    Mixing and stratification patterns in lakes are critical attributes because they are important regulators of distribution of gases, solutes and organisms. While numerous studies have focused on mixing and stratification in large lakes, the ecology and hydrodynamics of small lakes remain grossly understudied. This is critical because small lakes are far more abundant than large lakes globally. We studied a small (<1000 m2) and shallow (<0.6 m) lake with clear water and dense submerged charophyte stands located on Öland, SE Sweden, between March 25th and May 29th to investigate the thermal regimes, surface heat fluxes and stratification and mixing processes. Daytime vertical temperature differences developed in the water column ranging from 3 °C in March to 15 °C in May. Cooling of surface waters led to full convective mixing of the water column each night. The lake shallowed from March to May. The largest temperature differences were recorded in the early afternoon although wind speeds were highest at this time. The dense charophyte cover rapidly attenuated depth penetration of wind-induced mixing and radiative fluxes. Dense macrophyte stands can engineer their own environment by facilitating build-up of steep temperature and chemical gradients. This interaction should have implications for small lakes worldwide
    corecore